GPT_MODEL = "gpt-3.5-turbo" # only matters insofar as it selects which tokenizer to use
def num_tokens(text: str, model: str = GPT_MODEL) -> int:
"""Return the number of tokens in a string."""
encoding = tiktoken.encoding_for_model(model)
return len(encoding.encode(text))
def halved_by_delimiter(string: str, delimiter: str = "\n") -> list[str, str]:
"""Split a string in two, on a delimiter, trying to balance tokens on each side."""
chunks = string.split(delimiter)
if len(chunks) == 1:
return [string, ""] # no delimiter found
elif len(chunks) == 2:
return chunks # no need to search for halfway point
else:
total_tokens = num_tokens(string)
halfway = total_tokens // 2
best_diff = halfway
for i, chunk in enumerate(chunks):
left = delimiter.join(chunks[: i + 1])
left_tokens = num_tokens(left)
diff = abs(halfway - left_tokens)
if diff >= best_diff:
break
else:
best_diff = diff
left = delimiter.join(chunks[:i])
right = delimiter.join(chunks[i:])
return [left, right]
def truncated_string(
string: str,
model: str,
max_tokens: int,
print_warning: bool = True,
) -> str:
"""Truncate a string to a maximum number of tokens."""
encoding = tiktoken.encoding_for_model(model)
encoded_string = encoding.encode(string)
truncated_string = encoding.decode(encoded_string[:max_tokens])
if print_warning and len(encoded_string) > max_tokens:
print(f"Warning: Truncated string from {len(encoded_string)} tokens to {max_tokens} tokens.")
return truncated_string
def split_strings_from_subsection(
subsection: tuple[list[str], str],
max_tokens: int = 1000,
model: str = GPT_MODEL,
max_recursion: int = 5,
) -> list[str]:
"""
Split a subsection into a list of subsections, each with no more than max_tokens.
Each subsection is a tuple of parent titles [H1, H2, ...] and text (str).
"""
titles, text = subsection
string = "\n\n".join(titles + [text])
num_tokens_in_string = num_tokens(string)
# if length is fine, return string
if num_tokens_in_string <= max_tokens:
return [string]
# if recursion hasn't found a split after X iterations, just truncate
elif max_recursion == 0:
return [truncated_string(string, model=model, max_tokens=max_tokens)]
# otherwise, split in half and recurse
else:
titles, text = subsection
for delimiter in ["\n\n", "\n", ". "]:
left, right = halved_by_delimiter(text, delimiter=delimiter)
if left == "" or right == "":
# if either half is empty, retry with a more fine-grained delimiter
continue
else:
# recurse on each half
results = []
for half in [left, right]:
half_subsection = (titles, half)
half_strings = split_strings_from_subsection(
half_subsection,
max_tokens=max_tokens,
model=model,
max_recursion=max_recursion - 1,
)
results.extend(half_strings)
return results
# otherwise no split was found, so just truncate (should be very rare)
return [truncated_string(string, model=model, max_tokens=max_tokens)]